3.3.9 \(\int \frac {\cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^{7/2}} \, dx\) [209]

Optimal. Leaf size=241 \[ \frac {2 B \text {ArcSin}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a^{7/2} d}+\frac {(5 A-177 B) \text {ArcTan}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{64 \sqrt {2} a^{7/2} d}+\frac {(A-B) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}+\frac {(5 A-17 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{48 a d (a+a \cos (c+d x))^{5/2}}+\frac {(5 A-49 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{64 a^2 d (a+a \cos (c+d x))^{3/2}} \]

[Out]

2*B*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(7/2)/d+1/6*(A-B)*cos(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*c
os(d*x+c))^(7/2)+1/48*(5*A-17*B)*cos(d*x+c)^(3/2)*sin(d*x+c)/a/d/(a+a*cos(d*x+c))^(5/2)+1/128*(5*A-177*B)*arct
an(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(7/2)/d*2^(1/2)+1/64*(5*A-49*B)*s
in(d*x+c)*cos(d*x+c)^(1/2)/a^2/d/(a+a*cos(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.49, antiderivative size = 241, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {3056, 3061, 2861, 211, 2853, 222} \begin {gather*} \frac {(5 A-177 B) \text {ArcTan}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{64 \sqrt {2} a^{7/2} d}+\frac {2 B \text {ArcSin}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{a^{7/2} d}+\frac {(5 A-49 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{64 a^2 d (a \cos (c+d x)+a)^{3/2}}+\frac {(A-B) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{6 d (a \cos (c+d x)+a)^{7/2}}+\frac {(5 A-17 B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{48 a d (a \cos (c+d x)+a)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^(5/2)*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x])^(7/2),x]

[Out]

(2*B*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(a^(7/2)*d) + ((5*A - 177*B)*ArcTan[(Sqrt[a]*Sin
[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(64*Sqrt[2]*a^(7/2)*d) + ((A - B)*Cos[c + d
*x]^(5/2)*Sin[c + d*x])/(6*d*(a + a*Cos[c + d*x])^(7/2)) + ((5*A - 17*B)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(48*
a*d*(a + a*Cos[c + d*x])^(5/2)) + ((5*A - 49*B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(64*a^2*d*(a + a*Cos[c + d*x]
)^(3/2))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2853

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 3056

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 3061

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {5}{2}}(c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^{7/2}} \, dx &=\frac {(A-B) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}+\frac {\int \frac {\cos ^{\frac {3}{2}}(c+d x) \left (\frac {5}{2} a (A-B)+6 a B \cos (c+d x)\right )}{(a+a \cos (c+d x))^{5/2}} \, dx}{6 a^2}\\ &=\frac {(A-B) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}+\frac {(5 A-17 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{48 a d (a+a \cos (c+d x))^{5/2}}+\frac {\int \frac {\sqrt {\cos (c+d x)} \left (\frac {3}{4} a^2 (5 A-17 B)+24 a^2 B \cos (c+d x)\right )}{(a+a \cos (c+d x))^{3/2}} \, dx}{24 a^4}\\ &=\frac {(A-B) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}+\frac {(5 A-17 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{48 a d (a+a \cos (c+d x))^{5/2}}+\frac {(5 A-49 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{64 a^2 d (a+a \cos (c+d x))^{3/2}}+\frac {\int \frac {\frac {3}{8} a^3 (5 A-49 B)+48 a^3 B \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{48 a^6}\\ &=\frac {(A-B) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}+\frac {(5 A-17 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{48 a d (a+a \cos (c+d x))^{5/2}}+\frac {(5 A-49 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{64 a^2 d (a+a \cos (c+d x))^{3/2}}+\frac {(5 A-177 B) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{128 a^3}+\frac {B \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx}{a^4}\\ &=\frac {(A-B) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}+\frac {(5 A-17 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{48 a d (a+a \cos (c+d x))^{5/2}}+\frac {(5 A-49 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{64 a^2 d (a+a \cos (c+d x))^{3/2}}-\frac {(5 A-177 B) \text {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{64 a^2 d}-\frac {(2 B) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a^4 d}\\ &=\frac {2 B \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a^{7/2} d}+\frac {(5 A-177 B) \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{64 \sqrt {2} a^{7/2} d}+\frac {(A-B) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2}}+\frac {(5 A-17 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{48 a d (a+a \cos (c+d x))^{5/2}}+\frac {(5 A-49 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{64 a^2 d (a+a \cos (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 4.17, size = 350, normalized size = 1.45 \begin {gather*} \frac {\cos ^7\left (\frac {1}{2} (c+d x)\right ) \left (\frac {3 \sqrt {2} e^{\frac {1}{2} i (c+d x)} \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )} \left (128 B d x-128 i B \sinh ^{-1}\left (e^{i (c+d x)}\right )-i \sqrt {2} (5 A-177 B) \log \left (1+e^{i (c+d x)}\right )+128 i B \log \left (1+\sqrt {1+e^{2 i (c+d x)}}\right )+5 i \sqrt {2} A \log \left (1-e^{i (c+d x)}+\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}\right )-177 i \sqrt {2} B \log \left (1-e^{i (c+d x)}+\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}\right )\right )}{\sqrt {1+e^{2 i (c+d x)}}}+\frac {1}{4} \sqrt {\cos (c+d x)} (97 A-541 B+4 (25 A-181 B) \cos (c+d x)+(67 A-247 B) \cos (2 (c+d x))) \sec ^5\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{48 d (a (1+\cos (c+d x)))^{7/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^(5/2)*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x])^(7/2),x]

[Out]

(Cos[(c + d*x)/2]^7*((3*Sqrt[2]*E^((I/2)*(c + d*x))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]*(128*B*d*x
 - (128*I)*B*ArcSinh[E^(I*(c + d*x))] - I*Sqrt[2]*(5*A - 177*B)*Log[1 + E^(I*(c + d*x))] + (128*I)*B*Log[1 + S
qrt[1 + E^((2*I)*(c + d*x))]] + (5*I)*Sqrt[2]*A*Log[1 - E^(I*(c + d*x)) + Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))
]] - (177*I)*Sqrt[2]*B*Log[1 - E^(I*(c + d*x)) + Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))]]))/Sqrt[1 + E^((2*I)*(c
 + d*x))] + (Sqrt[Cos[c + d*x]]*(97*A - 541*B + 4*(25*A - 181*B)*Cos[c + d*x] + (67*A - 247*B)*Cos[2*(c + d*x)
])*Sec[(c + d*x)/2]^5*Tan[(c + d*x)/2])/4))/(48*d*(a*(1 + Cos[c + d*x]))^(7/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(702\) vs. \(2(204)=408\).
time = 0.37, size = 703, normalized size = 2.92

method result size
default \(-\frac {\left (-1+\cos \left (d x +c \right )\right )^{6} \left (\cos ^{\frac {5}{2}}\left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (134 A \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \left (\cos ^{4}\left (d x +c \right )\right )+100 A \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \left (\cos ^{3}\left (d x +c \right )\right )+15 A \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right )-531 B \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right )-104 A \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \left (\cos ^{2}\left (d x +c \right )\right )+30 A \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right )-494 B \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{4}\left (d x +c \right )\right )-768 B \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right ) \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )-1062 B \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right )-100 A \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \cos \left (d x +c \right )+15 A \sqrt {2}\, \sin \left (d x +c \right ) \cos \left (d x +c \right ) \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right )-230 B \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{3}\left (d x +c \right )\right )-1536 B \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )-531 B \sqrt {2}\, \sin \left (d x +c \right ) \cos \left (d x +c \right ) \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right )-30 A \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}}+430 B \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right )-768 B \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right ) \sin \left (d x +c \right ) \cos \left (d x +c \right )+294 B \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )\right )}{384 d \sin \left (d x +c \right )^{13} \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {7}{2}} a^{4}}\) \(703\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(7/2),x,method=_RETURNVERBOSE)

[Out]

-1/384/d*(-1+cos(d*x+c))^6*cos(d*x+c)^(5/2)*(a*(1+cos(d*x+c)))^(1/2)*(134*A*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*
cos(d*x+c)^4+100*A*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*cos(d*x+c)^3+15*A*2^(1/2)*cos(d*x+c)^3*sin(d*x+c)*arcsin(
(-1+cos(d*x+c))/sin(d*x+c))-531*B*2^(1/2)*cos(d*x+c)^3*sin(d*x+c)*arcsin((-1+cos(d*x+c))/sin(d*x+c))-104*A*(co
s(d*x+c)/(1+cos(d*x+c)))^(3/2)*cos(d*x+c)^2+30*A*2^(1/2)*cos(d*x+c)^2*sin(d*x+c)*arcsin((-1+cos(d*x+c))/sin(d*
x+c))-494*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^4-768*B*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))
^(1/2)/cos(d*x+c))*cos(d*x+c)^3*sin(d*x+c)-1062*B*2^(1/2)*cos(d*x+c)^2*sin(d*x+c)*arcsin((-1+cos(d*x+c))/sin(d
*x+c))-100*A*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*cos(d*x+c)+15*A*2^(1/2)*sin(d*x+c)*cos(d*x+c)*arcsin((-1+cos(d*
x+c))/sin(d*x+c))-230*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^3-1536*B*cos(d*x+c)^2*sin(d*x+c)*arctan(s
in(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))-531*B*2^(1/2)*sin(d*x+c)*cos(d*x+c)*arcsin((-1+cos(d*x
+c))/sin(d*x+c))-30*A*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)+430*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2-7
68*B*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))*sin(d*x+c)*cos(d*x+c)+294*B*(cos(d*x+c)/(
1+cos(d*x+c)))^(1/2)*cos(d*x+c))/sin(d*x+c)^13/(cos(d*x+c)/(1+cos(d*x+c)))^(7/2)/a^4

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*cos(d*x + c)^(5/2)/(a*cos(d*x + c) + a)^(7/2), x)

________________________________________________________________________________________

Fricas [A]
time = 8.27, size = 327, normalized size = 1.36 \begin {gather*} -\frac {3 \, \sqrt {2} {\left ({\left (5 \, A - 177 \, B\right )} \cos \left (d x + c\right )^{4} + 4 \, {\left (5 \, A - 177 \, B\right )} \cos \left (d x + c\right )^{3} + 6 \, {\left (5 \, A - 177 \, B\right )} \cos \left (d x + c\right )^{2} + 4 \, {\left (5 \, A - 177 \, B\right )} \cos \left (d x + c\right ) + 5 \, A - 177 \, B\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, {\left ({\left (67 \, A - 247 \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (25 \, A - 181 \, B\right )} \cos \left (d x + c\right ) + 15 \, A - 147 \, B\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 768 \, {\left (B \cos \left (d x + c\right )^{4} + 4 \, B \cos \left (d x + c\right )^{3} + 6 \, B \cos \left (d x + c\right )^{2} + 4 \, B \cos \left (d x + c\right ) + B\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{384 \, {\left (a^{4} d \cos \left (d x + c\right )^{4} + 4 \, a^{4} d \cos \left (d x + c\right )^{3} + 6 \, a^{4} d \cos \left (d x + c\right )^{2} + 4 \, a^{4} d \cos \left (d x + c\right ) + a^{4} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

-1/384*(3*sqrt(2)*((5*A - 177*B)*cos(d*x + c)^4 + 4*(5*A - 177*B)*cos(d*x + c)^3 + 6*(5*A - 177*B)*cos(d*x + c
)^2 + 4*(5*A - 177*B)*cos(d*x + c) + 5*A - 177*B)*sqrt(a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x
 + c))/(sqrt(a)*sin(d*x + c))) - 2*((67*A - 247*B)*cos(d*x + c)^2 + 2*(25*A - 181*B)*cos(d*x + c) + 15*A - 147
*B)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c) + 768*(B*cos(d*x + c)^4 + 4*B*cos(d*x + c)^3 + 6*
B*cos(d*x + c)^2 + 4*B*cos(d*x + c) + B)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*s
in(d*x + c))))/(a^4*d*cos(d*x + c)^4 + 4*a^4*d*cos(d*x + c)^3 + 6*a^4*d*cos(d*x + c)^2 + 4*a^4*d*cos(d*x + c)
+ a^4*d)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))**(7/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 6189 deep

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(7/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\cos \left (c+d\,x\right )}^{5/2}\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{7/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^(5/2)*(A + B*cos(c + d*x)))/(a + a*cos(c + d*x))^(7/2),x)

[Out]

int((cos(c + d*x)^(5/2)*(A + B*cos(c + d*x)))/(a + a*cos(c + d*x))^(7/2), x)

________________________________________________________________________________________